Kim, S.Y., Noguera, J.C., Morales, J. & Velando, A., 2011. Quantitative genetic evidence for trade-off between growth and resistance to oxidative stress in a wild bird. Evolutionary ecology, 25(2), pp.461-472.
Why do animals not grow at their maximal rates? It has been recently proposed that fast growth leads to the accumulation of cellular damages due to oxidative stress, influencing subsequent performances and life span. Therefore, the trade-off between fast growth and oxidative stress may potentially function as an important constraint in the evolution of growth trajectories. We test this by examining a potential antagonistic pleiotropy between growth and blood resistance to controlled free radical attack in a wild bird using a cross-fostering design and robust quantitative genetic analyses. In the yellow-legged gull Larus michahellis decreased resistance to oxidative stress at age 8 days was associated with faster growth in mass, across the first 8 days of life, suggesting a trade-off between mass growth and oxidative-stress-related somatic maintenance. We found a negative genetic correlation between chick growth and resistance to oxidative stress, supporting the presence of the genetic trade-off between the two traits. Therefore, investment of somatic resources in growth could be constrained by resistance to oxidative stress in phenotypic and genetic levels. Our results provide first evidence for a potential genetic trade-off between life-history and underlying physiological traits in a wild vertebrate. Future studies should explore genetic trade-offs between life-history traits and other oxidative-stress-related traits.