Availability of nonpigmentary antioxidant affects red coloration in gulls

Pérez, C., Lores, M. & Velando, A. Availability of nonpigmentary antioxidant affects red coloration in gulls. Behavioral Ecology 19, 967–973 (2008).

Red, orange, and yellow carotenoid-based colorations displayed by fishes and birds may function as honest sexual signals of the bearer’s quality. However, the mechanisms underlying the expression of these traits and the information they convey are still controversial. Because carotenoids are antioxidants and carotenoid-based pigmentation is bleached as a consequence of oxidative processes, it has been suggested that the pigmentation may signal antioxidant status. We tested this hypothesis in the yellow-legged gull (Larus michahellis), a seabird that exhibits a carotenoid-based red spot on the lower mandible. The availability of a nonpigmentary antioxidant (i.e., vitamin E) to the gulls was modified before egg laying by means of a supplementary feeding experiment. During the incubation period, breeding pairs were captured to assess the intensity of the color and the size of the red bill spots. We measured the plasma level of lipid peroxidation, total antioxidant capacity, and carotenoids. We found that males that received vitamin E supplements had larger red spot than control birds but that color intensity was not affected by the supplements. Moreover, we found that only those plasma carotenoids involved in the red coloration were affected by the antioxidant supplementation, suggesting an active mechanism to increase red coloration. Overall, our results provide experimental evidence for the hypothesis that carotenoid-based coloration reflects the bearer’s antioxidant status in male gulls.

Differential effects of specific carotenoids on oxidative damage and immune response of gull chicks

Lucas, A., Morales, J. & Velando, A. Differential effects of specific carotenoids on oxidative damage and immune response of gull chicks. Journal of Experimental Biology 217, 1253–1262 (2014).

Micronutrients are essential for normal metabolic processes during early development. Specifically, it has been suggested that diet-derived carotenoids can play a key role in physiological functions because of their antioxidant and immunostimulant properties. However, their role as antioxidants remains controversial. Additionally, it is also unclear whether oxidative stress mediates their immunostimulatory effects. In this field study, we separately supplemented yellow-legged gull (Larus michahellis) chicks with two carotenoids (lutein and β-carotene) with different molecular structures and different transformation pathways into other oxidative forms of carotenoids. We quantified their effect on the oxidative status and the immune response of chicks before and after an oxidative challenge with paraquat, a pro-oxidant molecule. Prior to oxidative challenge, none of the carotenoid treatments affected the oxidative status of chicks, but they enhanced the inflammatory response to an antigen compared with controls. The oxidative challenge enhanced plasma vitamin E levels (but not in β-carotene-supplemented chicks) and the antioxidant capacity in the short term. Interestingly, lutein-supplemented chicks showed lower oxidative damage to proteins than non-lutein-supplemented chicks. After the oxidative challenge, the positive effect of carotenoid supplementation on the immune response disappeared. Thus, these results suggest differential effects of two carotenoids with different molecular structures on the oxidative status. Lutein but not β-carotene helps to combat oxidative damage after a free-radical exposure. Additionally, the results indicate that the immunostimulatory effects of carotenoids are linked to oxidative status during early life.