Soil under dead or live organic matter systems: Effect of: European shag (Phalacrocorax aristotelis L.) nesting on soil nematodes and nutrient mineralization


Here we studied whether soil systems differ if they are under the influence of live (plants) or dead organic matter systems (nest) in terms of C and N mineralization, microbiological characteristics and nematode trophic group structure. We analyzed physicochemical and microbiological properties of soils inside and outside nests of the European shag (Phalacrocorax aristotelis L.) on the Cíes Islands (NW Spain). We sampled fresh soil below dead (nests) and live organic matter (plants) (paired samples, n = 7). Soil of nests had lower organic matter and higher electric conductivity and dissolved organic C and extractable N contents than the soil of plants. Microbial biomass and activity were greater in soil of nests than in soil of plants. The abundance of nematode trophic groups (bacterivores, fungivores, omnivores and herbivores) differred between soils of nests and plants, and the soil of plants supported a more abundant and diverse nematode community. The present results points to that source of organic matter promote differences in the decomposer community, being more efficient in soil of nests because C mineralization is greater. Further, this occurred independently of the complexity of the systems, higher in the soil of plants with more groups of nematodes.


Complex demographic heterogeneity from anthropogenic impacts in a coastal marine predator

Oro, D., Álvarez, D. e Velando, A., 2018. Complex demographic heterogeneity from anthropogenic impacts in a coastal marine predator. Ecological Applications.


Environmental drivers, including anthropogenic impacts, affect vital rates of organisms. Nevertheless, the influence of these drivers may depend on the physical features of the habitat and how they affect life history strategies depending on individual covariates such as age and sex. Here, the long‐term monitoring (1994–2014) of marked European Shags (Phalacrocorax aristotelis) in eight colonies in two regions with different ecological features, such as foraging habitat, allowed us to test several biological hypotheses about how survival changes by age and sex in each region by means of multi‐event capture–recapture modeling. Impacts included fishing practices and bycatch, invasive introduced carnivores and the severe Prestige oil spill. Adult survival was constant but, unexpectedly, it was different between sexes. This difference was opposite in each region. The impact of the oil spill on survival was important only for adults (especially for females) in one region and lasted a single year. Juvenile survival was time dependent but this variability was not synchronized between regions, suggesting a strong signal of regional environmental variability. Mortality due to bycatch was also different between sex, age and region. Interestingly the results showed that the size of the fishing fleet is not necessarily a good proxy for assessing the impact of bycatch mortality, which may be more dependent on the fishing grounds and the fishing gears employed in each season of the year. Anthropogenic impacts affected survival differently by age and sex, which was expected for a long‐lived organism with sexual size dimorphism. Strikingly, these differences varied depending on the region, indicating that habitat heterogeneity is demographically important to how environmental variability (including anthropogenic impacts) and resilience influence population dynamics.