Maternal programming of offspring antipredator behavior in a seabird

Morales, J., Lucas, A. e Velando, A., 2018. Maternal programming of offspring antipredator behavior in a seabird. Behavioral Ecology, arx197, https://doi.org/10.1093/beheco/arx197


Predation risk is an important environmental factor for animal populations, expected to trigger maternal effects to prepare offspring for living in an environment with predators. Yet, evidence of adaptive anticipatory maternal effects in wild animals is still weak. Here, we explored this question in a wild colony of yellow-legged gulls, Larus michahellis. To this aim, prior to laying we exposed mothers to either mink decoys or nonpredator rabbit decoys and explored the antipredator behavior of 118 chicks at the age of 2 days. We found that chicks from second-laid eggs by predator-exposed mothers crouched faster after hearing a playback with adult alarm calls than chicks from second-laid eggs by control mothers. Besides, chicks from third-laid eggs by predator-exposed mothers were lighter than control chicks, but this was not due to differences in egg volume. Our results suggest that predator-exposed mothers modified offspring phenotype via eggs to cope with predators, although only in chicks from second-laid eggs. Maternal transference of corticosterone could underlie chick behavioral plasticity. Results support the role of maternal effects as a form of phenotype programming to forewarn offspring about environmental hazards.

Hatching hierarchy but not egg-related effects governs behavioral phenotypes in gull chicks

Diaz-Real, J., Kim, S.Y. & Velando, A., 2016. Hatching hierarchy but not egg-related effects governs behavioral phenotypes in gull chicks. Behavioral Ecology. doi: 10.1093/beheco/arw110


In many bird species that practice parental care, siblings often compete for resources and care provided by their parents, although their strategies differ according to hatching rank and condition. Differences in offspring strategies are generally attributed to hatching order and maternal effects, which are difficult to separate because these effects are often correlated. For example, third-hatched chicks of large gull species receive more egg testosterones and corticosterone, which influence early behavioral patterns. In this study, we carried out a cross-fostering experiment with first- and last-laid eggs of the yellow-legged gull (Larus michahellis) to test whether the within-brood variation in behavioral strategies for competing with siblings and coping with stress are due to maternal effects or to hatching order. Chicks hatched in the last position within the experimental brood emitted more chatter calls to attract parents’ attention, were less prone to respond to warning of danger, and had a lower breathing rate while restrained than first-hatched chicks. Egg laying order did not affect chick behaviors or breathing rate. Thus, we concluded that the different behavioral strategies of chicks were determined by their posthatching experience and not by the original egg position within the clutch. Last-laid eggs were smaller and chicks from those eggs grew slower than chicks from first-laid eggs. Independently of the original laying order, chicks that hatched first in the experimental brood grew faster than their siblings. Overall, our results indicate that behavioral strategies of chicks are plastic and influenced by their early social