Soil under dead or live organic matter systems: Effect of European shag (Phalacrocorax aristotelis L.) nesting on soil nematodes and nutrient mineralization.

Aira, M. and Domínguez, J., 2020. Soil under dead or live organic matter systems: Effect of European shag (Phalacrocorax aristotelis L.) nesting on soil nematodes and nutrient mineralization. Soil Ecology Letters, pp.1-7.

Here we studied whether soil systems differ if they are under the influence of live (plants) or dead organic matter systems (nest) in terms of C and N mineralization, microbiological characteristics and nematode trophic group structure. We analyzed physicochemical and microbiological properties of soils inside and outside nests of the European shag (Phalacrocorax aristotelis L.) on the Cíes Islands (NW Spain). We sampled fresh soil below dead (nests) and live organic matter (plants) (paired samples, n = 7). Soil of nests had lower organic matter and higher electric conductivity and dissolved organic C and extractable N contents than the soil of plants. Microbial biomass and activity were greater in soil of nests than in soil of plants. The abundance of nematode trophic groups (bacterivores, fungivores, omnivores and herbivores) differred between soils of nests and plants, and the soil of plants supported a more abundant and diverse nematode community. The present results points to that source of organic matter promote differences in the decomposer community, being more efficient in soil of nests because C mineralization is greater. Further, this occurred independently of the complexity of the systems, higher in the soil of plants with more groups of nematodes.


Fai clic para acceder a s42832-020-0023-9.pdf

Soil nutrient dynamics in colonies of the yellow-legged seagull (Larus michahellis) in different biogeographical zones

De la Peña-Lastra, S., Affre, L. and Otero, X.L., 2020. Soil nutrient dynamics in colonies of the yellow-legged seagull (Larus michahellis) in different biogeographical zones. Geoderma, 361, p.114109.


Seabirds drastically alter the ecosystems where they establish their colonies. However, previous studies have not considered how colonies of the same species affect their surroundings in different environmental contexts. The main objective of this study was to determine the degree to which environmental factors (particularly climate and lithology) modulate the impact of seabird colonies on soil nutrients. For this purpose, two breeding colonies of the yellow-legged gull were selected: one located in the Atlantic Islands National Park (AINP, Atlantic region) and the other in Calanques National Park (CNP, Mediterranean region). In both parks, samples of soil and excrement were obtained from colonies with different densities of birds and in control zones, without birds, in two different seasons (winter and summer). The samples were analysed to determine the concentrations of N-NO3, N-NH4+, total P and different geochemical P forms, including bioavailable P. The colony soils were enriched in N and P relative to soils from the control zones. However, the annual nutrient dynamics were modulated by the environmental conditions in each park. In winter in CNP, NH4+ concentrations were low and similar to those in the control zones, while the concentrations of NO3 were highest at this time of year. By contrast, in AINP, the annual N cycling appeared to be less variable, although the NH4+ concentrations were lower than in the control zone in winter, while those of NO3 remained high, despite the high rainfall in this season. The concentrations of P (total and bioavailable) remained high in soils in both parks throughout the year. However, fractionation of the P forms revealed different geochemical behaviour at the two sites. In CNP, calcium phosphate and residual P were the dominant fractions. In AINP, the P was distributed more homogeneously between the different fractions, with a slight predominance of the P associated with Al hydroxides and clays. The findings clearly show alteration of the cycling of both nutrients in both parks, although the impact is modulated by the environmental conditions at each location.